Economic Impact Analysis for NIST Laboratory Research Programs

Gregory Tassey

Senior Economist

National Institute of Standards and Technology

tassey@nist.gov

http://www.nist.gov/public_affairs/budget.htm

Economic Analysis

Economic Analysis for Government R&D Programs

Study Design Issues

10 Years of Economic Studies

- 31 Retrospective Impact Studies
 - Selection not random
 - Estimation of benefits limited to industries directed targeted by the research project
 - One to three industries
 - Usually no extrapolation to other industries
- <u>6 Prospective/Planning Studies</u>
 - Focus is one to three *industry sectors*
 - Extrapolation to U.S. economy possible

Methodological Approach

Elements of Economic Studies

Technology and Industry Assessment

- Technology trajectories
- Industry structure and competitive dynamics
- Technology Infrastructure (TI) roles and trajectories
- Patterns of underinvestment in TI

Economic Analysis Framework

- Identification of TI R&D output metrics
- Determination of outcome or cost metrics
- Specification of project cost
- Selection of economic outcome measures
- Selection of study period

Data Collection Plan

- Determination of industry populations
- Selection of survey methods
- Industry introductions
- Pretest survey
- Conduct industry surveys
- Collect government cost data

Economic Impacts

- Quantitative analysis
- Qualitative analysis

Present Results

- Draft report
- Final report
- Oral briefings
- Publications

Methodological Approach

- Use multidisciplinary consultant teams that include
 - -- technologists
 - -- industry analysts
 - -- economists
 - -- financial analysts
 - -- survey design specialists
- Apply and adapt conventional techniques of
 - -- technology assessment
 - -- microeconomic analysis
 - -- financial analysis

Output Metrics

• NIST Laboratories: <u>Infratechnologies</u>

- -- measurement and test methods
- -- science and engineering databases
- -- quality control algorithms
- -- interface protocols
- -- test artifacts (SRMs) & services (calibrations)

• ATP: Generic Technologies

- -- private R&D investment leveraged
- -- cumulative patents filed
- -- cumulative technologies commercialized

Output Metrics

- MEP: Technology Transfer
 - -- number of firms assisted or projects completed
 - -- investments/business practices changed
- National Quality Program
 - -- number of firms adopting criteria

Outcome Metrics

Investment

- -- Follow-on R&D investment (ATP)
- -- R&D efficiency (Labs)
- -- reduced R&D cycle time (ATP, Labs, NQP)
- -- production efficiency (Labs, MEP, NQP)

Sales

- -- market entry decisions (ATP, MEP)
- -- new products (ATP)
- -- market access—interoperability (Labs)
- -- market penetration—lower transaction costs (Labs)

Outcome Metrics

Profits

- -- new markets (ATP, MEP, Labs)
- -- increased productivity/quality/reliability (Labs, MEP, NQP)
- Employment/Wages & Salaries (ATP, MEP)

Outcome Measures--Quantitative

Example: Profit Measures

- Net Present Value
- Benefit-Cost Ratio
- Internal (Social) Rate of Return

Data Quality Issue:

- Corporate outcome data collected in real time
- Only government cost data collected in real time

Outcome Measures--Qualitative

Emphasize Interactions with Technology & Industry

- By stage of economic activity: R&D, production, marketing
- Over technology life cycle
- Supply chain coverage
- Market entry decisions
- Market penetration rates

Microeconomic Impact Assessment

Recent <u>Retrospective</u> Economic Impact Studies: Outputs and Outcomes of NIST Laboratory Research

Industry/Project	Output	Outcomes	Measure
Chemicals: Standards for sulfur in fossil fuels (2000)	Measurement methodsReference materials	Increase R&D EfficiencyIncrease productivityReduce transaction costs	IRR: 1,056% BCR: 113 NPV: \$409M
Semiconductors: Josephson volt standard (2001)	Measurement methodsReference materials	Increase R&D efficiencyEnable new markets	IRR: 877% BCR: 5 NPV: \$42M
Communications: Data encryption standard (2001)	Standard (DES)Conformance test methods	Accelerate new marketsIncrease R&D efficiency	IRR: 270% BCR: 58–145 NPV: \$345M–\$1.2B
Communications: Role- based access control (2001)	Generic technologyReference models	Enable new marketsIncrease R&D efficiency	IRR: 29-44% BCR: 43-99 NPV: \$59-138M
Energy: Gas mixture standard for regulatory compliance (2002)	Standard (NTRM)	Increase productivityReduce transaction costs	IRR: 221–228% BCR: 21–27 NPV: \$49–63M
Manufacturing: Product design data standard (2002)	Standard (STEP)Conformance test methods/facilities	Increase R&D efficiencyReduce transaction costs	IRR: 32% BCR: 8 NPV: \$180M

Microeconomic Impact Assessment

Recent <u>Prospective</u> Economic Studies of Costs due to Inadequate Technology Infrastructure

			Estimated
Focus of Study	Industries Covered	Infrastructure Studied	Annual Costs
Interoperability	• Automotive supply chain	• Product design data exchange	\$1 billion
costs (1999)		standards	
Deregulation	• Electric utilities	Metering	\$3.1–\$6.5 billion
(2000)		Systems monitoring/control	
Software testing	• Transportation equipment	• All stages of the testing cycle	\$60 billion
(2002)	 Financial services 		
Interoperability	• Transportation equipment	• Demand, production,	
costs (in	• Electronics supply chains	procurement, & distribution	
progress)		information exchange	
Medical testing	• Laboratories (calcium,	• Quality of measurement	
(in progress)	cholesterol, PSA)	assurance	
Service sector	 Telecommunications 	• R&D classifications	
R&D—joint with	 Software 	 Manufacturing interface 	
NSF (in progress)	 Financial 		
	• RD&T		